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1 Earth system

Four Spheres
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1 Cryosphere

Climate system:

Climate: The average state of atmospheric elements over
a period of time

Climate system: Atmosphere, hydrosphere, biosphere and
lithosphere,cryosphere




1 Cryosphere science
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1 Cryospheric components
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Cryosphere: the sphere
with certain thickness
and temperature below 0
°C on the Earth.

Atmosperic ice crystal - v Marine cryosphere
v Continental cryosphere

v Aerial cryosphere




1 Cryosphere

Most of permafrost in Tibetan
and Mongolia, Then in Alaska
and Canada
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Figure 2.1 | Distribution of mountain areas (orange shading) and glaciers (blue) as well as regional summary statistics for glaciers and permafrost in
mountains. Mountains are distinguished based on a ruggedness index (>3.5), a logarithmically scaled measure of relative relief (Gruber, 2012). Eleven distinct regions with
glaciers, generally corresponding to the primary regions in the Randolph Glacier Inventory, RGI v6.0 (RGI Consortium, 2017) are outlined, although some cryosphere related
impacts presented in this chapter may go beyond these regions. Region names correspond to those in the RGI. Diamonds represent regional glacier area (RGI 6.0) and circles
the permafrost area in all mountains within each region boundary (Obu et al., 2019). Histograms for each region show glacier and permafrost area in 200 m elevation bins as
a percentage of total regional glacier/permafrost area, respectively. Also shown is the median elevation of the annual mean 0°C free-atmosphere isotherm calculated from the
ERA-5 re-analysis of the European Centre for Medium Range Weather Forecasts over each region’s mountain area for the period 2006—2015, with 25-75% quantiles in grey.
The annual 0°C isotherm elevation roughly separates the areas where precipitation predominantly falls as snow and rain. Areas above and below this elevation are loosely
referred to as high and low elevations, respectively, in this chapter.

Hock et al., 2019



1 Glacier shrinkage
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Gardner et al., 2013, Science
Ding et al., 2019, Science bulletin
David et al., 2023, science
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1 Glacier shrinkage in Urumugqi River

Changes in Glacier No. 1 at the headwater of Urumugi river in Tienshan
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1 Glacier mass balance from WGMS
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1 Greenland and Antarctic ice sheets have been losing mass
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Equivalent Sea Level Contribution (m)

Greenland ice sheet

34 [-6 - 74] Gt/yr  1992-2001
215 [157 - 274] Gt/yr 2002-2009
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Antarctic ice sheet
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10bserved Increasing in ground temperature of permafrost
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1Permafrost degradation
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2 Cryospheric hazards
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2 Cryospheric hazards-Temporal and spatial scales
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2 Cryospheric hazards

O Land hazards: Avalanche, ice collapse, glacier surging, GLOF,

thaw slumping

O Atmosphere hazards: Pastoral snow avalanche



2 Cryospheric hazards

j*"" Shocking visuals: Glacier breaks in" -

vUttarakhand s Chamoli, several feared dead

- N

February 7, 2021:
Massive floods caused
by an ice collapse In
northern India kill more
than 100.



2 Cryospheric hazards




2 Cryospheric hazards

Ice collapse and GLOF in Anymagin, 2022

Red: ice collapse in
2016

Green:in 2019
Yellow: tongue in
2022




2 Cryospheric hazards

O Retrogressive thaw slumps

14:29

K3035 in‘Tibet plateau road 2011 o Q- : Réi[wWﬁe@ﬁ%Sﬁﬁﬂg;@OlS

Isolatec hill in bailuhe, 2019 [ IK3035in Tibet plateatsoad 2019 M - Honglianghe in 2018
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3 Snow Hazards

Snow avalanche

Snowmelt flood Snow disaster in pasturing area



Snow Hazards distribution across China
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3 Several Case study

» Snow avalanche
» Snow disaster in pasturing area
» lce collapse

» Glacier surging

» GLOF

» Thaw slumping Avalanche in Mount Manaslu, Nepal, 20220927

In January 2020, avalanches in Pakistan-
administered Kashmir killed at least 76
people and injured 53 others



3.1 Snow avalanche

X ¢ + &
4 . ERD: Snow Pack (M) FRD: Snow Pack (M)+ Recseater (X
* O o\

Mj(O.SG

(http://ffden-2.phys.uaf.edu/211_fall2004.web.dir/tamar_young2/page4forcesonthesnowpack.html)

® Snow avalanches are snow masses that rapidly descend steep slopes, its formation is the complex interaction
between terrain, snowpack and meteorological conditions (Schweizer et al., 2003).

® The contributory factors are terrain, new snow, wind, temperature, snow cover stratigraphy and selected
snow properties (Schweizer et al., 2003).

® A human-triggered avalanche occurs when the snow is at a critical balance between strength and strain.



3.1 Snow Avalanche in Tienshan(LI lanhail)
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Temporal distribution of Snow Avalanche
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Inducing factors and condition
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Avalanche types

Full layer dry avalanche(FDA) Surface dry avalanche(SDA) Surface wet avalanche) Full wet avalanche(FWA)

Feb.21 Mar. 10

5% 6.5% 16.7%
25.8%
90% 67.7% 83.3%
1 1 1

Nov 1 Jan 1 Feb 20 Mar 10 Apr 1

Nov. 1 Jan. 1




Avalanche observation
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Avalanche Mechanism
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Avalanche Mechanism

Shear failure
17

Fissure diffusion

Shear stress
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Snow parameters
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Avalanche early warming system

Data analysis and warming | | :
RS and ground monitoring releas Receive early warming Emergency and hedging
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3.2 Several Case study

» Snow avalanche

» Snow disaster in pasturing area
> lce collapse

» Glacier surging

» GLOF

» Thaw slumping



3.2 Snow disaster In pasturing area

® Snowstorm is the main form of snow disaster
in the pasturing area, which seriously
threatens the livestock in winter.

® Snow disasters in the pasturing area are
distributed in Xinjiang, the Tibetan Plateau,
and inner Mongolia across China.

Loss of snow disaster in pasturing areas (Hu, 2013)

. . Livestock | Economic
Time Region
loss loss

1977 XilinGol 3 million 0.17
billion
1990 Tibet / 0.6 billion
North
1994 bl 11,000 /

Snow disaster level in pasturing areas across China from 1994 to 2000 (Hu, 2013)



Jeopardize/Loss

Snow disaster 1s a kind of meteorological disaster or cryosphere
disaster caused by excessive snowfall, too deep snow, too long
duration of snow and low temperature, and the lack of emergency
measures to cause casualties of people and livestock, damage to
transportation, and the economic and social system.

O In the winter of 1999-2003, Mongolia suffered the most severe snow disaster in nearly 50 years. 8.5
million livestock (25%) died as a result of the snow.

O In the winter of 1970-71, a catastrophic snowfall in Georgia killed 39 people. In the winter of 1975-78,
heavy snow killed 42 people, and in 1986-87, heavy snow killed 80 people. Economic losses
amounted to $60, 200,500 million, and about 20,000 residents were forced to change their homes.

O In the winter of 1999/2000-2009/2010, the total number of deaths due to snowstorms in Japan was

1,769, with an annual average of 495 snowstorms.



Jeopardize/Loss In Tibetan Plateau
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In the past 50 years, 238 snow events were recorded, with (more
than 600,000 livestock deaths) occurring in 1974-75, 1979, 1982,
1989, and 1995. In recent years, small numbers (less than 600,000) T .
have occurred, but the total number of deaths has increased. Snow e ) N

disasters mainly occurred in Hainan, Yushu and Guoluo prefectures
in the south and southeast of Qinghai Province, as well as Nagqu,
Shigatse and Shannan regions in the Tibet Autonomous Region.
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Jeopardize/Loss

From the end of December 2018 to March 2019, a large-scale snowstorm occurred in the headwaters of the Lancang
River, the source of the Three rivers on the Qinghai-Tibet Plateau, which led to livestock death




Mechanism

Adaptation
Risk'managemesi

(—

——

The risk of snow disaster refers to the potential loss
caused by dangerous snowfall and snow events to the
economy, society and environment of the affected area.
Therefore, Integrated risk, R) can be expressed as A function
of the cryospheric event risk (D), Exposure (E), Vulnerability
(V) and Adaptation (A) of the affected area

R=f (D, E,V, A



Risk evaluation
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Risk evaluation

it E S riER SRS, #HI{T-{ELogisticEl)a, BIHERELEMMEIER.
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Hazards index
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Exposure and vulnerability
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Adaptation
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Risk Index
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Risk management
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3.3 Several Case study

» Snow avalanche

» Snow disaster In pasturing area
» lce collapse

» Glacier surging

» GLOF

» Thaw slumping



3.3 Ice collapse

Iee collaps

An icefall is a portion of certain glaciers characterized by relatively rapid flow and chaotic crevassed surface, ca
used in part by gravity. The term icefall is formed by analogy with the word waterfall, which is a similar pheno
menon of the liquid phase but at a more spectacular speed. When ice movement of a glacier is faster than elsewh
ere, because the glacier bed steepens or narrows, and the flow cannot be accommodated by plastic deformation,
the ice fractures, forming crevasses. Where two fractures meet, seracs (or ice towers) can be formed. When the

movement of the ice slows down, the crevasses can coalesce, resulting in the surface of the glacier becoming sm

oother.

Wikipedia
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3.3 Ice collapse recorded
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Aru lce collapse scale

i VN

Image before events: 2016 01 10 Ice collapse in 2016-07-17

».d Ice coIIapse in 2016 09-21

No. 53 ice avalanche fan: 5.7 km long, 2.4 km wide, 9.4 km2 area, average thickness of about 7.5 m, volume of 70 million m3
No. 50 ice avalanche fan: 4.7km long, 1.9km wide, 6.5 km2 area, average thickness of more than 30 m, volume of 100 million

m3



Aru lce collapse-Wu guangjian
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Aru lce collapse-monitoring
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Aru lce collapse induced Seiche(lake wave/lake tsunami)

Ice avalanche of glacier No.53 quickly rushed into Aru Co and formed a lake tsunami with a

maximum of more than 20 meters on other side of lake.

Lake tsunami traces



Aru lce collapse-equipment
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O Mass balance
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Aru Ice collapse-Aru Glacier daily velocity
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Aru lce collapse-Glacier velocity

cGPS on ice surface in Jan. 2018 Glacier velocity:3.7-8.1m/a
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Aru lce collapse-Seismograph
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3.X Ice collapse-alaska
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Aru lIce collapse-Ablation stakes
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. AruNo.53

O From October 4, 2016 to July 24, 2017, Fan of No. 53 melted about 3 meters (3.07 to 3.41 meters) and Fan
of No0.50 melted about 2 meters (1.97 to 2.40 meters).

O From July 24, 2017 to September 24, 2017, Fan No. 53 melted 2.95 to 5.14 meters and Fan No. 50 melted
3.49 to 3.80 meters



Aru lce collapse-
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Aru lce collapse-Inducing factors

Warming, wetting and special geological and geomorphological conditions

IHCr
casin., -
asmg Insty bilis

Climate Y Of glac; er
warming \

Wetting

Provides favorable
terrain for ice collapse

The soft bedrock facilitates {MLile) (o]s)%
the flow of the glacier
No abnormality was found before and after
the ice collapse



Aru lIce collapse-early warming

ﬁ Satellite

UAV

s
. Seismometer
A :

e

Ice crevasse
Glacier depth
Velocity
Cryoseismology
Glacial surface elevation

OOO0Oo0oao

Remote sensing(Landsat, Sentinel, PALSAR, GF)
UAV(DEM-+surface infrared survey)

3D survey

Mass balance-energy balance (AWS)

Glacier velocity, depth, snow pit et al.
Cryoseismology

Wu Guangjian



Aru lce collapse-early warming system
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3 Several Case study

» Snow avalanche

» Snow disaster In pasturing area
> lce collapse

» Glacier surging

» GLOF

» Thaw slumping



3.4 Several Case study

Glacier surging is a quasiperiodic oscillation between long periods (tens to hundreds of years) of slow flow,
called quiescent phase or quiescence, and shorter periods of typically 10-1000 times faster flow, called surge
phase, active phase, or surge.

1.Surge Cycle (Tenyears; hundred years)

2.Rare: Less than 1% of glaciers

@
o
©o
o
o
S

530000

Fig. 7. Front positions (vear and month) of Nathorstbreen glacier
system during the advancing stage (3) of the surge. Advance by
2013 is 15 km. Bed topography modified from Carlsen (2004). The
minimum depth is 11 m. while the maximum depth is 76 m. Back-

ground image from 1 September 2008 by SPOTSPIIT®. - ( Sng et al., 2014) Cryosphere



3.4 Glacier surging

Example-velocity change of Surge Glacier in Tajikistan

\ AN
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O N

Fig. 2. Bivachny glacier (fragment of ETM+ image, 16 September
2000). The longitudinal axis (L), along which the ice-velocity
measurements were carried out, is shown by dots. Numbers
indicate distance along the longitudinal axis, in km. Traces of
clean ‘drops’ of MGU glacier are distinctly visible. They are formed
as a result of the surges of the main Bivachny glacier body, which
dragged the MGU glacier tongue into the movement.
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(Kotlyakov et al., 2008) Annals of glaciology



Glacier surge related hazards

Distribution of surge-type glaciers globally and over High Mountain Asia (HMA) from current knowledge
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Numbers of Surge-type
Glaciers Glaciers

Area of Surge-type

RGI Regions and Codes
Numbers

Percentage( Area Percentage

%) (km?) (%)
Alaska (1) 239 0.9 11998.5 13.8
Arctic Canada, North (3) 53 1.2 30319.5 28.9
Arctic Canada, South (4) 7 0.1 4053.1 9.9
Greenland Periphery (5) 98 0.5 14367.8 111
Iceland (6) 23 4.1 7864.7 711
f‘;;albard BLERBEEL 45y 27.9 214297  63.1
Russian Arctic (9) 36 3.4 10729.0 20.8
Asia, North (10) 2 0.0 18.8 0.8
Central Europe (11) 4 0.1 19.7 0.9
Caucasus and Middle East 7 0.4 a4 32
(12)
High Mountain Asia (13,
14, 15) 902 0.9 19335.9 19.8
Southern Andes (17) 28 0.2 2099.8 7.1
Globally 1850 0.9 122278.0 164

RGI Regions and Codes

Numbers of Surge-type Glaciers Area of Surge-type Glaciers

Numbers Percentage(%) Area (km?) Percentage (%)

Hissar Alay (13-01)
Pamir (13-02)

West Tianshan (13-03)
West Kunlun (13-05)
East Kunlun (13-06)
Inner TP (13-08)
Southeast TP (13-09)
Karakoram (14-02)
West Himalaya (14-03)
Central Himalaya (15-01)
East Himalaya (15-02)
Hengduan (15-03)
Total

3 0.1 119.7 6.5
614 6.0 4581.4 44.8
26 0.3 1537.6 16.1
30 0.6 2035.1 24.9

8 0.2 345.6 10.6
25 0.3 479.4 5.7

7 0.1 101.9 2.5
181 13 9853.3 42.8

0.0 159 0.2
0.1 44.2 0.7
0.0 13.3 0.3
0.1 208.4 4.7
902 0.9 19335.8 19.8

Globally there are at
least 1850 surge-type
glaciers

Most surge-type
glaciers are distributing
in Circum-Arctic
(49.0%) and HMA
(48.8%)

Pamir and Karakoram
are the two centers of
surge-type glacier
distribution among
HMA

More surge-type
glaciers are supposed to
be found following the
technical advances and
under climate change

(Guo et al., 2022)



Known catastrophic disasters caused by glacier surges

According to literature records:

 Glacier surges have caused more than
50 catastrophic disasters all over the
world

« More than 310 peoples were killed by
glacier surge

Recent media reports and scientific
publications suggested an increasing
frequency of glacier surge events and
related disasters, and rising threats to

infrastructures and human lives

Midu Glacier 1988 Surge 5 people dead, destroyed
into lake bridges, water mills, and
caused farmland
flood 24 km of highway

Pamir Mountains destroyed
Medvezhiy Glacier 1963 Advance Electric power station Zelunglung Glacier 1950 Glacier Destroyed Zhibai village
collapse (97 dead)
Flood Bridges, motorway and and
power lines destroyed, flood
flooding of airfield and 1968 Glacier Destroyed a bridge
damage near Vanj collapse
1973 Flood Several bridges and
demolished, damz_1gc to flood
. ) o road and Vpo wcrrlmcs Unnamed, Amney Repeated Advance Country road/pilgrim path
Geographical Society Beginning of the Flood Damage in Vanj Valley Machen
Glacier century
. Caucasus
Karayaylak Glacier 2015 Advance Damage to farmland and -
shelters Kolka Glacier 1902 Mud =32 deaths
Karakorum flow
Yengutz Har Glacier 1903 Advance Destroyed mills and 2002 Glacier Village destroyed with
flooded fields collapse over 100 deaths
Karambar 1902 Flood Destroyed Gilgit village European Alps
Aling Glacier 1992 Flood Destroyed a summer Belvedere 2001 Advance Trail damage and closure
village of lift
Shishpar Glacier 2019 Advance POWER plant overrun Vemagtferner 1600, 1678, 1680, Flood Heavy damage and loss of
Impassable pathways 1773, 1845, 1847, property
Kyagar Glacier 1880, 1971, 1978, Flood Destructive flood and 1848
and 2002 Iceland
1961 Flood =7 lives and 124 houses Nordlingalaegdarjokull 1869 Advance Destroyed farmstead
lost, also =261 wheat
and > 700ha crops Skeidararjokull 1929 Advance Destroyed a telephone line
1997 Flood 12.5M$ damage
2 -
o 1999 Flood 25M$ dz@ age . Hagafellsjokull 1999 Iceberg Destroyed bridge,
Kutiah Glacier 1953 Advance Very rapid advance into and damaged two dams
farmland flood
Khurdopin/Shimshal 1884, 1893, 1901, Flood Considerable damage Alaska
Valley 1904-06, 1922, from repeated floods, ’
1927, 1944, 1950, destruction of houses, Glacier Bay, Alaska Little Ice Age Advance Native legend document
1960-64, 1980, and bridges, water mills, advances that destroyed
2017 fields. and orchards villages
Ghulkin Glacier 2008 Several Destroyed farmland and South America
floods irrigation channels Glaciar Grande del 1934 Flood More than 60 deaths and
Tibet Nevado del Plomo destroyed a power plant
Aru-1 2016 Glacier 9 deaths, hundreds of 1786 Flood Road, slaughterhouse and
collapse animals town hall destroyed

(Trufferetal., 2021)




3.4 Glacier surging
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3.4 Glacier surging

A local people said that this
glacier was In surging a matter of
one hundred years. But it was not

recorded.

Karayaylak Glacier (GLIMS ID: G075254E38623N)

Area:115km?

Length: 20 km

Debris cover area: 25.6 km? : summer pasture 73



3.4 Glacier surging

Event
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«— Guangxi heavy rainfall affected more than 170000 people SOE executives sacked more than half of the energy sector Search

are over 12 rivers in flood warning is the hardest hit number one —

Archives
September 2015

Xinjiang kongur nine other peaks of glacier surging pastoral
houses were buried

Posted on May 16. 2015 by Sina
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3.4 Glacier surging

75



3.4 Glacier surging

Data sources

Year/Month/Day Path/Row Resolution (m)

Landsat 8 OLI L1T 2014/10/3 150/33 15/30

Landsat 8 OLI L1T 2015/4/22 149/33 15/30
Landsat 8 OLI L1T 2015/4/29 150/33 15/30
Landsat 8 OLI L1T 2015/5/8 149/33 15/30
Landsat 8 OLI L1T 2015/5/15 150/33 15/30

Landsat 8 OLI L1T 2015/6/16 150/33 15/30

2015/5/16 11068 2/8




3.4 Glacier surging

‘ _Ve I O C I ty Datenauf/ -nachbereitung Bildkor'relation

AusreiBereliminierung  Berechnung (Korrektur Rauschartefokte,

« Feature tracking of Landsat 8 OLI L1T data using R —
CosiCorr and CIAS [ T . T

* Postprocessing (e.g. filtering)

& -Extent b
* Manual delineation s
@ Crevasse
Uncertainty :
= Multi-temporal images of Landsat 8 OLI were successfully co- _"giz.ztl‘:,,“;?‘@fyn 31:2:;‘5‘:;?:2;“;12.“%
registered to an accuracy of 0.4 pixels Gehebeecr

Validierung/ glaziologische Interpretation

= The displacement uncertainty (1) can be calculated by the

formula:
HL= ’9% + 9% 77



3.4 Glacier surging

AR R A E kWA




3.4 Glacier surging
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3.4 Glacier surging

Velocity-Profiles

Velocity (m/d)
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3.4 Glacier surging

Surge Tongue extent Surge Crevasse

522000 524000

Legend
@ Sheepfolds/shelters
__ Glacier extent in 2009
R Position changes of glacier surging frontier
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4.2 Glacier surging

UAV by Xinjiang Institute after event
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3.4 Glacier surging
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3.4 Glacier surging

v'The western tributary of Karayaylak Glacier has been surging no later than 22

April 2015, burying grassland in the northwest lateral moraine
v'The glacier in the surge region is heavily broken, with many crevasses.
v'The profile velocity after 22 April was faster than before

v'It was controlled by hydrology



3.4 Glacier surging
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3.5 Several Case study

» Snow avalanche

» Snow disaster In pasturing area
> lce collapse

» Glacier surging

» GLOF

» Thaw slumping



3.5 Several Case study

[ Jckulhlaups (glacier outburst floods) -usually glacial lake outburst floods

J&ulhlaups is an Icelandic term derived from the word j&kull (glacier) and hlaups(spring or burst). It means
a sudden release of meltwater from a glacier or a moraine-dammed lake (Sturm and benson, 1985; Paterson,

1994; Roberts, 2015)
1,6Lateral moraine lake, end moraine lake

W, Ice-dammed lake

Concentric crevasses

o
2019/6/12 13:50

Subglacial or englacial

Sudden release,fast and significant increase in meltwater discharge



Glacier and Glacier lake
| Jkulhlaups (glacier outburst floods)

~N

Trigger mechanism

/

Glacier melt floods

Temperature

Glacier outburst floods

Glacier lake outburst
flood

O Climate change-extreme climate

O Englacial lake drainage

Precipitation

Earthquake

Ice collapse

Glacier surging

\olcanically
induced

Drainage

Supraglacial Lake
Englacial Lake
Subglacial Lake




GLOFs threaten Asian’s infrastructure

| Observed increase in GLOFs GLOF types Predicted increase in GLOF risk

~ GLOFs Hydropower projects

-~ ¢ Ice-dammed GLOF = <100 MW

¢ Moraine-dammed GLOF o  100-300 MW

¢ Other GLOF O 300-1000 MW

—— River O  >1000 MW

we Karakoram Highway @ Planned
Glacier @ Existing or under construction

[] Karakoram ranges [] Himalaya ranges

- Hmucuo
Gonghunplu Tsho)
2016-07-05 20200025

Sl

1988-07-15 Increasing GLOFs
iz 2013-05-11
b i
. oy Nyaingentanglha | ¢, e g Ve . DDDDDDDE‘

70°E

¥ Merzbacher A Kyagar

All

10. — Ice-dammed GLOF
P ~— Moraine-dammed GLOF
§8] —otherGLOF :
a- B -
Eo
4 3
i ﬂF‘I nlJ-U'hJJh"—m—‘ Englacial lake  Drainage
1

900 1950 1980 = Increasing exposure and impacts

(Nie et al., 2023, SCI. BULL.)

® 298 GLOF events (categorized as moraine-dammed, ice-dammed or “other” GLOF) were reported with increasing frequency from 1900 to 2022, .
® Multiple GLOFs recorded have severely damaged Asian infrastructure (such as bridge, road and hydropower) since 1964.

A boom in investment in transport and hydropower infrastructure is underway in Asia’s high mountains while downstream populations are growing
rapidly, combined with climate change, are raising the risk of GLOF.

® The lack of in-situ observation and key knowledge gaps of GLOF risk restrict the prevention and control of cryospheric hazards.



3.5 GLOF-Badswat

Uzbekistan

‘ China
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3.5 GLOF-Badswat

® Dammed Point £

73.80

Lake Badswat 2018, July,17




3.5 GLOF
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Supraglacial lake

X

Debris flow route/ . .
B Supraglacial lake have always existed

2018-8-15 before and after event

B Debris flow route is clear showed in 18, July
S

o®® B [ce dam region also showed in 18, 25 July

Supraglacial lake
¥ B End moraine lake develop in 15 August.

92




3.5 GLOF
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5 GLOF
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Landsat 8 OLI 2018-7-10
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What’ happen

NG

i~

Ice debris flow promoter

\I'cc collapse

egend ILegend
Glacier in 1999 lake_20180725

| ] Glacier in 2018

S2 2018.7.15 . S2 2018.7.25

_ake Badswat- other blocked lake
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Step 1: Ice debris flow

1
7 oy . 1
</; Initiation area !

i Step 2: Ice dam

Step 3: Debris flow

3000m -

2610 m

What did we know about?

» flood-dammed ditch-debris flow-dammed lake
» High temperature and heavy precipitation before event(in early stage),High temperature

and no precipitation when event occurred. _ _
What drives the GLOF and debris flow?



3.5 GLOF

Weather monitoring post (WMP) 8km far away

Temperature and rainfall trend of Matramdan village Red line: maximum T
30 Green Line: minimum T

Blue Line: rainfall
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Anwar et al., 2020



3.5 GLOF

€ 1341 glacial lakes were extracted along the China-Pakistan Economic Corridor, of
which 492 are Blocked lake, 723 are Erosion lake, 86 are Supraglacial lake and 40 are
Other glacial lake, with a total area of 109.76 km=in 2018. And most of those lakes in
CPEC are concentrated between 4100-4500 m.a.s.l.

€ the number of glacial lakes had been increased from 1144 to 1341 and area from
89.17 km2 to 109.76 km2 (18.8%) during 2000-2018. End-moraine lake and
Supraglacial lake have changed significantly. Furthermore the area and quantity of
glacial lakes in high altitude areas(more than 4000 m.a.s.l) changed more obviously.

@ Other blocked glacial lakes are related to disaster chain which theatens the property.



3.6 Several Case study

» Snow avalanche

» Snow disaster In pasturing area
> lce collapse

» Glacier surging

» GLOF

» Thaw slumping



3.6 Thaw slumping disaster

A slope failure mechanism characterized by the melting of ground ice, and downslope
sliding and flowing of the resulting debris.

Rock fall Landslide

——| _ Fragments of rock
o %’. 1 break away from
U the cliff face due to

Cliff face —| \| weathering e.g.

Saturated soil

;‘ ISR e ey 5 Types of mass movement

Thaw slumping is a periglacial process that occurs on slopes in cold environments,
where the ground becomes unstable and the surface slides downhill due to
saturation with water during thawing.



3.6 Thaw slumping

2018.9.11

Thaw slumping near Tibetan railway in Beiluhe Basin

Thaw slumping near foothills in Beiluhe Basin

Thermal karst formation conditions:

1) permafrost with high ice

2) The heat exchange conditions that can melt the permafrost with high ice
are actually the disturbance or destruction of the surface energy balance;

3) With the topographic conditions of meltwater accumulation, thermokarst
processes will generally form thermokarst erosion in mountainous and hilly

areas.

Survey methods:

€ Drone aerial photography;

€ GMR nuclear magnetic resonance water finder

€ DISCUS nuclear magnetic resonance moisture content tester

€ High resolution remote sensing data



3.6 Thaw slumping-distribution near Tibetan railway

f ( GaoFen-1 remote Comparison of thaw slumping
Sentinel-1 GaoFen-2 W DEM sensing data BECUrACY
| I x
! ] { Bi-directional cascade network for
InSAR perceptual edge detection
deformation MDDV data Slope data Suspected arca Mndclll;t::ccmd

Inlersection over union
the data features

[ Compute a geometric intersection of

Training model

BIlches protesied

|

|

|

|

|

|

|

|

|

|

| data | *
: L ] + Training sample ‘ | |
| constriction
|

|

|

|

|

|

|

|

|

|

Bl
of thaw slumping

__________________________

(f)
dieprto ~ The overall architecture of a bi-
shallow + directional cascade network
(BDCN). The incremental Py

detection (ID) block is a
fundamental component of a

shallow
fadeen BDCN, which is trained using Models identifying the contour of the
o layer-specific supervisions same landslide: a ResNet101,
[ _Gm,;,'"};;‘]m,m inferred by a bi-directional
Edge Maps

cascade structure.



3.6 Thaw slumping-distribution near Tibetan railway
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Thaw slump hazards of permafrost in the Tibetan Plateau
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Thaw slump hazards of permafrost in the Tibetan Plateau
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Thaw slump hazards of permafrost in the Northern Hemisphere
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3.6 Effects of Thaw slumping

Major projects, resource development and environmental protection in
cryosphere

* Qinghai-Tibet railway
* Qinghal-Tibet highway
« Mining engineering
« \West-east gas
transmission project
* China-Russia oil
pipeline IS SATESSL SSETSRISSERNRRnes s
«  Golmud-lhasa Pipeline A R
e Sanjiangyuan Ecological protection project

«  Qilian Mountain, Tianshan Mountain ecological protection
project




3.6 Thaw slumping-mitigation and adaption

Active cooling

Regulated radiation by
sunshield

Controlled convection by
ventilation pipe, heat pipe, block
stone base and slope protection
subgrade

Regulated conduction by
“thermal semiconductor”

Enhanced cooling by multi-
control methods

Major engineering initiatives - Active insulation

ntilation roadbed of
Qinghai-Tibet railway




3.6 Thaw slumping-mitigation and adaption
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Outline

1. Cryosphere and its Rapid Changes
2.Cryosphere hazards

3. Several cases study

-Snow avalanche
-Snow disaster in pasturing area
-Ice collapse
-Glacier surging
-GLOF
-Thaw slumping
4. Observation and early warming system



Observation and early warning system of cryospheric hazards ©
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Thank you!
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